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ABSTRACT

Purpose The search for small molecules with activity against
Mycobacterium tuberculosis (Mtb) increasingly uses high through-
put screening and computational methods. Several public datasets
from the Collaborative Drug Discovery Tuberculosis (CDD TB)
database have been evaluated with cheminformatics approaches
to validate their utility and suggest compounds for testing.
Methods Previously reported Bayesian classification models
were used to predict a set of 283 Novartis compounds tested
against Mtb (containing aerobic and anaerobic hits) and to
search FDA approved drugs. The Novartis compounds were
also filtered with computational SMARTS alerts to identify
potentially undesirable substructures.

Results Using the Novartis compounds as a test set for the
Bayesian models demonstrated a >4.0-fold enrichment over
random screening for finding aerobic hits not in the compu-
tational models (N=34). A 10-fold enrichment was observed
for finding Mtb active compounds in the FDA drugs database.
85.9% of the Novartis compounds failed the Abbott SMARTS
alerts, a value substantially higher than for known TB drugs.
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Higher levels of failures of SMARTS filters from different groups
also correlate with the number of Lipinski violations.
Conclusions These computational approaches may assist in
finding desirable leads for Tuberculosis drug discovery.
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INTRODUCTION

Mpycobacterium tuberculosis (Mtb), the causative agent of
tuberculosis (TB), infects approximately one third of the
world’s population, and 1.7-1.8 million people die from
this disease annually (1). Agents that are active against Mtb
are urgently needed to combat this global epidemic that is
heavily influenced by resistance to the available regimen of
drugs, lengthy treatment, and co-infection with HIV.

S. Ekins
Department of Pharmaceutical Sciences, University of Maryland
Baltimore, Maryland, USA

S. Ekins

Department of Pharmacology, Robert Wood Johnson Medical School
University of Medicine & Dentistry of New Jersey

Piscataway, New Jersey 08854, USA

J. S. Freundlich

Department of Biochemistry and Biophysics, Texas A&M University
College Station, Texas 77843, USA

@ Springer



1860

Ekins and Freundlich

Several recent reviews have summarized (2) and addressed
the shortage of compounds in the research and develop-
ment pipeline for this disease (3). This pipeline is overdue in
delivering a drug, as there has not been a new approved
treatment for tuberculosis in over 40 years. Recently, many
phenotypic screening efforts have searched for compounds
that inhibit the growth of Mtb (3). These compounds
broadly sample libraries of small molecules, yet such studies
have rarely used past knowledge of Mth active compounds
to focus screening. Leveraging such knowledge to produce
computational models or rules for the virtual screening of
compound libraries as a complement to high-throughput
screening i vitro could improve the efficiency of screening
(4). Computational and statistical analyses can also be
utilized to provide insights into small molecule physiochem-
ical properties which may be important for activity against
Mtb. Additionally, several ligand-based (5) or protein-based
(6) studies have discussed filters that may be implemented
either before or after a biological screen in order to identify
molecules with an optimal set of physiochemical properties
(e.g. hit-like, lead-like, or drug-like (7)) to further streamline
the discovery of novel antituberculars.

We have previously used Bayesian methods (5) with
molecular function class fingerprints of maximum diameter
6 (FCFP_6) (8) to identify substructures that are important
in recent tuberculosis screening datasets (9). We have also
extended this approach and validated the models with a set
of 102,000 compounds from the same laboratory contain-
ing 1702 molecules with >90% inhibition at 10 uM,
representing a hit rate of 1.66% (10). We were able to
demonstrate 10-fold enrichments in finding active com-
pounds in the top ranked 600 molecules (10).

Critically, we have sought to utilize cheminformatics to
not only predict small molecules with activity against Mtb,
but to leverage methods to select for chemical entities,
either as library inputs or screening hits, with a desired set
of physiochemical properties (10—12). Filters can enable
removal or flagging of undesirable molecules (thiol traps
and redox-active compounds, epoxides, anhydrides, and
Michael acceptors that can covalently modify a cysteine
moiety in a surrogate protein (13—15)), false positives and
frequent hitters (16). For example, we have previously
compared the filtering of malaria hits and datasets screened
against Mth, and three antimalarial datasets had very high
failures with the Abbott Alerts (11), while a similar pattern
was seen for Mtb (> 81% failure) versus known Mtb drugs
(> 50% failure) (10).

In the current study, we have used two new independent
test sets for our Bayesian models of Mth whole cell efficacy
in order to further demonstrate the predictive value of these
statistical models in Mtb drug discovery. One data set
consists of 283 compounds screened against cultured Mtb from
Novartis (details available at http://www.collaborativedrug.
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com/register), and we have used it to successfully identify the
34 compounds with MIC values <10 pM. After removing
compounds already in the Bayesian model, the test set size
was reduced to 248 molecules. This complete Novartis
dataset was also filtered using SMARTS filters (11,12) and
compared to our previous analysis of other libraries screened
against Mth. Additionally, we have used our Bayesian models
for Mtb to screen natural products and FDA approved drugs
to further validate our approach against published data (17)
in order to suggest new compounds that may be useful to test
i wvitro. The contributions of this study are 1) further
validation of Bayesian models of Mtb whole cell efficacy to
deliver actives with a high degree of enrichment over random
sampling and 2) demonstration of the utility of SMARTS
filters to suggest potential liabilities and for refinement of
either the chemical library input or hit set output for a screen.
These along with similar cheminformatics methods (18,19)
could help to identify new molecules that could become
useful probes of Mtb essential biology or inspire novel
antitubercular leads or drugs.

MATERIALS AND METHODS
CDD Database

The development of the CDD TB database (Collaborative
Drug Discovery Inc. Burlingame, CA) has been previously
described (20). Screening datasets were collected and uploaded
in CDD TB from sdf files and mapped to custom protocols
(21). We have also used a separate database of antibiotics
(N=163) obtained from the Microsource US Drugs database
(V=1039) as well as a large dataset of approved drugs
(N=2815 were used for predictions with the Bayesian Models)
from Professor David Sullivan (Johns Hopkins University). A
subset of FDA approved drugs (V=2804) was further grouped
mto those with 0, 1, 2, 3 or 4 Lipinski violations (22). A set of
283 Novartis compounds screened against Mth under aerobic
and anaerobic conditions was recently kindly provided and
made available in the CDD TB database.

Descriptors

The Novartis compounds and, in particular, those that
were aerobic or anaerobic hits were compared to MLSMR
and TAACTF-NIAID-CB2 hits (10,20) using simple and
readily interpretable calculated molecular properties in-
cluding logP, number of hydrogen bond donor, number of
hydrogen bond acceptor, Lipinski Rule of Five alerts, polar
surface area, molecular weight, rotatable bonds, and atom
counts, which were computed using the Marvin plug-in
(ChemAxon, Budapest, Hungary) within the CDD database
(10,20).
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Machine Learning with 2D Descriptors

We have previously described the Bayesian classifier
modeling method in detail (23). Two Laplacian-corrected
Bayesian classifier models were generated using Discovery
Studio 2.1 or 2.5.5 (Accelrys, San Diego, CA) (10,20) as
described previously for the MLSMR 220,463 molecules
(4096 active) (9) and the dose-response data using 2273
molecules (475 active). These models used molecular
function class fingerprints of maximum diameter 6
(FCFP_6) (8) and the following interpretable descriptors:
AlogP (24), molecular weight, number of rotatable bonds,
number of rings, number of aromatic rings, number of
hydrogen bond acceptors, number of hydrogen bond
donors, and molecular fractional polar surface area. It has
been described elsewhere that pre-selection of descriptors is
not required with Bayesian methods, as only descriptors
correlating with activity are used and other descriptors
discarded. Hence, there is less of an over-fitting issue (25).
These two Laplacian-corrected Bayesian classifier models
for Mtb have been previously validated with several
external test sets (9) including the TAACF- NIAID-CB2
dataset of 102,634 molecules (10).

The Novartis compounds as well as the FDA approved
drug database were downloaded from the CDD databases.
These datasets as well as a set of 800 natural products (from
the Microsource natural products database, http://www.
msdiscovery.com/) were also scored with the Bayesian
models. Any molecules that were identical (Tanimoto
similarity using MDL fingerpint keys=1) to those in the
training set were removed to afford 248 Novartis com-
pounds, 663 natural product molecules and 2108 FDA
approved drugs. As a comparison of test sets, the mean
maximal Tanimoto similarity for test set compounds = SD
was calculated using the MDL fingerprints in Discovery
Studio.

Predictions for the datasets were calculated from the input
sdf file using the “calculate molecular properties” protocol to
distinguish between compounds that are active against Mtb
and those that are inactive under aerobic conditions. The data
were then ranked, and the prioritization of hits was then used
to create Receiver Operator Characteristic (ROC) graphs in
Microsoft Excel 2003.

A new Bayesian model was generated using the 283
Novartis compounds (42 with aerobic activity MIC <10 pM
and classified as active) as a training set. Molecular function
class fingerprints of maximum diameter 6 (FCFP_6) (8),
AlogP, molecular weight, number of rotatable bonds,
number of rings, number of aromatic rings, number of
hydrogen bond acceptors, number of hydrogen bond
donors, and molecular fractional polar surface area were
used as the descriptors with the “calculate molecular
properties” protocol. This model was further validated

using leave-one-out cross-validation. Each sample was left
out one at a time, and a model built using the results of the
samples was used to predict the left-out sample. Once all
the samples had predictions, a ROC plot was generated,
and the cross-validated ROC area under the curve (XV
ROC AUC) was calculated (23). Other statistics were also
generated as previously described elsewhere (20,23). The
model was additionally evaluated by leaving out 50% of the
data and rebuilding the model 100 times using a custom
protocol in Discovery Studio (available from the author on
request) for validation, in order to generate the ROC AUC
(23). We also used various previously described datasets as
external test sets for this model.

SMARTS Filters

The Abbott ALARM (13), Glaxo (26) and Pfizer LINT
SMARTS (also called the Blake filters (27)) filter calcu-
lations were performed through the SMARTS filter web
application, kindly provided by the Division of Biocomput-
ing, Department of Biochemistry and Molecular Biology,
University of New Mexico, Albuquerque, NM, (http://
pasilla.health.unm.edu/tomcat/biocomp/smartsfilter). This
software identifies the number of compounds that pass or
fail any of the filters implemented. Each filter was evaluated
individually with each set of compounds.

The SMARTS filters in Discovery Studio 2.5.5 were also
used as previously described (10). Each filter has a
minimum and maximum number of times that it is allowed
to map. A molecule must match this filter or it will be noted
as failing the filter.

RESULTS
Differentiating Aerobic from Anaerobic Mtb Hits

With the Novartis Mtbh screening data, the anaerobic
compounds in several cases showed statistically different
and higher mean descriptor property values compared with
the aerobic hits (e.g. molecular weight, logP, hydrogen
bond donor, hydrogen bond acceptor, polar surface area
and rotatable bond number, Table I). The mean molecular
properties for the Novartis compounds are in a similar
range to the MLSMR and TAACF-NIAID CB2 hits
(Table I).

Bayesian Model Development and Validation
Laplacian-corrected Bayesian classifier models are compu-
tationally fast and have been used widely for several drug

discovery applications in recent years, including with Mtb
(5). In this study, we first used the Novartis aerobic assay
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Table | Novartis Hits Mean (SD) Molecular Descriptor Property Values Compared with MLSMR and TAACF Dataset Hits Described Below (10,20).
Mean Aerobic and Anaerobic Hits from the Novartis Dataset were Compared with a Two Sided t-test, ®» <0.05, °p < 0.0001.

Dataset Molecular logP Number of Number of  Lipinski Atom count  Polar surface  Rotatable
weight hydrogen hydrogen Rule of Five area bond
bond bond alerts number
donors acceptors
Novartis compounds 331.23 (78.06) 3.30 (1.44) 1.24(0.98) 4.18(1.97) 0.13 (0.40) 39.12 (10.51) 69.75(34.29) 3.72 (1.99)
(N=1283)
Novartis Aerobic hits 31223 (59.79) 292 (1.33) 0.88(0.77) 3.26 (1.72) 0.07 (0.26) 38.09 (10.54) 49.41 (23.75) 3.00 (1.85)

< 10 uM (N=42)

Novartis Anaerobic hits
(N=241)

MLSMR Active = 90%
inhibition at 10 uM
(N=4096)

TAACF-NIAID CB2
Active = 90% inhibition
at 10 uM (N=1702)

357.10 (84.70) 3.58 (1.39)

334.54 (80.47) 3.36 (1457 131 (1.00)

.16 (0.93)

349.58 (63.82) 4.04 (1.02) 0.98 (0.84)

434(1.97)% 0.14 (0.42) 3930 (10.52) 73.29 (34.65)° 3.84 (1.99)

489 (1.94) 0.0 (0.48) 42.99 (12.70) 83.46 (34.31) 4.85 (2.43)

4.18 (1.66) 0.19 (0.40) 41.88 (9.44) 70.28 (29.55) 4.76 (1.99)

hits as a test set for the previously described Bayesian
models (10,20) to provide further validation of the
approach using the published data from a different group.
The mean maximal Tanimoto similarity was 0.671+0.13 for
the dose response model and 0.48+0.12 for the single point
model (using the MDL fingerprints). ROC plots were
generated for both the Southern Research Institute (SRI)
single point model and the SRI dose-response model
(Fig. 1). For the Novartis data, over 35% of the total hits
are found with the dose-response model in the top 8% of
molecules (enrichment > 4-fold). Interestingly the single
point model performed initially only slightly better than
random, then degraded rapidly to random (Fig. 1).
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dose-response model
0+ T T T T ]
0 20 40 60 80 100

% of test set screened
Fig. | Receiver operator characteristic for the Novartis aerobic Mtb hits

(N=34) used as a test set (N=248) for the two previously published
Bayesian models (20).
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Recently, a set of 1514 known drugs (both FDA and
foreign approved) was screened against Mtbh and the MIC
values determined using the Alamar blue susceptibility
assay (17). Compounds were identified that had known
antitubercular activity (N=20), and novel hits (N=18) were
found. We have used 21 of these actives (Table II) as a
second test set seeded in a larger set of 2108 FDA approved
molecules downloaded from the CDD database. The mean
maximal Tanimoto similarity of these compounds was 0.22+
0.08 for the dose-response model and 0.59+£0.17 for the single
point model. We were able to show that both models initially
had ~ 10-fold enrichments (Fig. 2). The single point model
identified >60% of the active compounds (Table II) in the top
14% of all FDA approved compounds, while the dose
response model was initially comparable but rapidly degraded
in prediction quality (Fig. 2).

In addition to utilizing the Novartis data as a test set for
the SRI models, we have used it to create a new Bayesian
model. The Novartis Bayesian TB model had leave-one-
out-cross-validation ROC statistics (0.84, Table III) that
were also stable after leaving out 50% of the data 100 times
(Table IV). The latter validation method also showed good
concordance and specificity statistics but low sensitivity
(Table IV). Figure 3 shows molecular substructure features
important for discriminating between active and inactive
compounds in the Novartis Bayesian TB model (the
training set). It is intriguing to note that the imidazole
fragment, present in the Phase II investigational drugs
PA-824 (28) and OPC-67683 (29) is quite prevalent
amongst these actives, as was the amide linker. Perturbation
of the arrangement of ring nitrogens from 1,3- to 1,2
afforded pyrazole- and pyrazolone-derived molecules that
were inactive in most cases. This Novartis model was used
to predict active compounds in the SRI dose-response
dataset (473 actives in 2267 compounds, mean Tanimoto
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Table Il Rank Ordering of FDA

Approved Drugs with the Bayes- Drugs MIC vs. Mtb Single point Bayesian Dose-response

ian Mtb Models and Previously ™M) (17) score (rank) Bayesian score (rank)

Published Literature MIC Values

(17) Lomefloxacin 5 31.52 (13) 21.70 (5)
Pyrvinium Pamoate 0.31 29.55 (15) —3.62 (1686)
Triple Dye (Brilliant Green, Gentian Violet, 5 18.61 (34) —4.76 (1822)

Proflavine Hemisulfate)

Pyrithione 2.5 14.62 (47) —1.00 (1'117)
Oxiconazole nitrate >5 13.89 (51) 3.35(95)
Minocycline 0.31 9.83 (79) 15.09 (10)
Aconiazide 0.63 8.33 (98) —0.31 (823)
Methylene blue >5 7.92 (108) 0.89 (356)
Doxycycline Hyclate 0.16 6.11 (129) 9.65 (17)
Tetracycline 1.25 2.10 (238) 7.60 (26)
Cetalkonium Chloride 5 [.59 (258) 0.55 (462)
Doxycycline 0.63 0.93 (280) 8.00 (25)
Primaquine 5 0.80 (285) —3.26 (1617)
Chlorhexidine 5 —0.93 (390) —3.22 (1608)
Methylbenzethonium Chloride 5 0.037 (475) —2.76 (1523)
Bismuth subnitrate 2.5 —2.76 (706) —0.30 (818)
Thonzonium 5 —3.77 (899) —3.07 (1577)
Hexadimethrine Bromide 5 —4.50 (1010) 0.01 (665)
Demecarium >5 —7.75 (1399) —2.32 (1429)
Sulfathiazole >5 —8.09 (1433) —12.7 (2082)
Cefmenoxime 2.5 —32.95 (2031) —6.88 (1963)

similarity 0.39%0.09). The enrichment in the top-ranked
100 compounds was approximately 2-fold, and this rapidly
declined to random (data not shown). Similarly, we used
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Fig. 2 Receiver operator characteristic for the FDA approved Mtb hits (N =
21) used as a test set (N=2108) for the two previously published Bayesian
models (20).

the FDA dataset (21 actives in 2815 compounds, mean
Tanimoto similarity 0.27£0.09) such that there were no
compounds in common with the training set. The Novartis
model performed essentially random on this dataset (data
not shown). In all test case examples described above it
appears that better results are obtained with the training set
that possesses the higher mean maximal Tanimoto similarity.
With the Novartis data, these mean maximal Tanimoto
similarity values are very low.

SMARTS Filters

The Novartis Mth compounds were examined with several
well-known filters for offending compounds or “swill” (30),
which we have used in recent studies (10-12). 85.9% failed
the Abbott Alarm filters, 47.7% failed the Pfizer LINT
filters, 7.1% failed the GSK filters, and 37.4% failed the

Table I Cross Validated Results for Bayesian Model Building (FN = False
Negative, FP = False Positive, LOO = Leave One Out, LO = Leave Out%,
ROC = Receiver Operator Characteristic, TN = True Negative, TP = True
Positive)

TP/FN FP/TN  Number
of actives

Dataset (number
of molecules)

XV ROC  Best Split
AUC

Novartis (N=283)  0.84 1115 28/14 42

20/221
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Table IV Mean (SD) Leave Out

50% x 100 Cross Validation of Dateset External Internal ROC Score  Concordance  Specificity Sensitivity
Bayesian Model (ROC = Receiver (number of molecules)  ROC Score
Operator Characteristic)

Novartis (283) 0.81 (0) 0.82 (0) 80.61 (9.0)  84.19 (12.4) 59.91 (15.0)

Accelrys filters (Table V). The SMARTS filtering data
(Table V) are consistent with what was seen in the analysis
of the other TB datasets, FDA approved drugs, GSK and
Novartis malaria data, etc. (12). The high level of failures
with the Abbott ALARM filter is a potential concern and

has been observed previously (10-12). Interestingly, while a
natural products database has a lower failure rate for the
Abbott ALARM and Pfizer LINT filters, the GSK and
Accelrys filters had a higher failure rate compared with the
Novartis compounds.

G1: -803711802
12 out of 12 good
Bayesian Score: 1.536

G2: -904785030
12 out of 12 good
Bayesian Score: 1.536

G3: 144183755
12 out of 13 good
Bayesian Score: 1.484

G4: -1350693998
10 out of 10 good
Bayesian Score: 1.483

G5: 1363933490
10 out of 10 good
Bayesian Score: 1.483

G6: 737835132
10 out of 10 good
Bayesian Score: 1.483

-

s N
] G
WN <7

G7:-641378730
9 out of 9 good
Bayesian Score: 1.449

G8: 1592795550
9 out of 9 good
Bayesian Score: 1.449

G9: 444547831
18 out of 25 good
Bayesian Score: 1.388

G10: -1644617620
9 out of 10 good
Bayesian Score: 1.387

G11: 624859675
10 out of 12 good
Bayesian Score: 1.369

G12: 845414188
7 out of 7 good
Bayesian Score: 1.362

7 X

G13: -1057125929
7 out of 7 good
Bayesian Score: 1.362

0. NH

AI‘

G14: 973813398
7 out of 7 good
Bayesian Score: 1.362

G15: -203115083

14 out of 20 good
Bayesian Score: 1.323

G16: -444825055
14 out of 20 good
Bayesian Score: 1.323

G17: 27258599
9 out of 12 good
Bayesian Score: 1.274

*

*,NH\/IQ*

G18: 907096426
10 out of 14 good
Bayesian Score: 1.268

G19: -670163659
5 out of 5 good
Bayesian Score: 1.233

G20: -2102302457
7 out of 9 good
Bayesian Score: 1.226

Fig. 3 Bayesian model for Novartis whole cell aerobic data. (a). Simple descriptors with FCFP_6: features important for Actives, (b). Simple descriptors
with FCFP_6: features important for Inactives. * = any atom.
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B17: 436886043
1 out of 63 good
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Bayesian Score: -1.588

B19: 1075826633
0 out of 25 good
Bayesian Score: -1.557

B20: 690481386
0 out of 23 good
Bayesian Score: -1.492

Fig. 3 (continued)

For comparison, we have evaluated the FDA approved
drugs from CDD and looked at the subsets with 0 to 4

Lipinski violations (Supplemental Tables I and II). Molecules
with zero Lipinski violations had the lowest levels of

Table V SMARTS Filtering Number of Failures (%) Using the SMARTS Filter Website. The Discovery Studio Software was also Used as a Comparison.

Dataset Abbott ALARM Pfizer LINT GSK Accelrys

Novartis (283) 243 (85.9) 135 (47.7) 20 (7.1) 91 (37.4)
TB drugs (13) 7 (53.8) 6 (46.1) 1 (7.7) 9 (69.2)
US Antibiotic drugs from Microsource US drugs database (163) 144 (88.3) 93 (57.0) 57 (35) 126 (77.3)
Microsource US FDA drugs (1041) 688 (66.1) 516 (49.6) 143 (13.7) 499 (47.9)
Johns Hopkins —All FDA drugs (N =2693) 1442 (53.5) 1264 (46.9) 401 (14.9) 1357 (50.4)
Natural products from Microsource (800) 521 (65.1) 304 (38.0) 125 (15.6) 397 (49.6)
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Fig. 4 (a) A plot of the percentage of SMARTS filter failures for
compounds with different numbers of Lipinski violations. (b) A plot of
percentage of FDA drugs and the different numbers of Lipinski violations.

SMARTS filter failures across all four filters. We show a
correlation between the number of SMARTS filter failures
and the number of Lipinski violations for all different types
of rules sets (Fig. 4A). The Novartis compounds that are
acrobic hits all have either 0 or 1 Lipinski violations, while
there are a small number of aerobic inactives that have more
violations (Supplemental Table III). When the Novartis
dataset SMARTS filter failures are analyzed, there is little
difference between the Abbott Alerts percentage failures in
aerobic actives or non-actives, while the other filters are
more discriminating, with a higher failure rate for non-
actives versus actives (Supplemental Table IV).

DISCUSSION

Efforts to develop useful chemical probes of Mth with the
potential to inspire novel lead compounds have seen
relatively limited application of cheminformatics methods
that have been utilized in other therapeutic areas (5,19,31).

@ Springer

Although not the first to implement Bayesian analyses of
Mitb data, we have previously used a far larger dataset (over
200,000 compounds) compared with <4000 compounds
reported by others (5). We have also previously used the
training sets (9) to identify many unique molecular frag-
ments that are present in all actives, which could be useful
in helping define the chemical attributes of an antituber-
cular compound to more effectively seed drug design
efforts. These models suggest the value of continued
learning in such computational methods (e.g. progressive
increase in the size of a model as new data are added) and
validation with different test sets. Previously, we have
validated both Bayesian Mtb models with external com-
pounds using the published NIAID, GVKbio and TAACF-
NIAID CB2 datasets, which range from 2880 to over
102,000 compounds. The TAACF-NIAID CB2 data came
from the same source (9,32) as the training sets used in the
original models and represents an ideal scenario from
modeling to limit any experimental variability. The largest
test set also contained a more realistic percentage of hits, ~
2%. In this example we showed in this case that Bayesian
models could enhance the number of hits identified 10-fold
over random high throughput screening. The caveat with
these models is they are likely limited to predicting
compound activity under the exact i vitro conditions used
(9) and within the chemistry space of the model training sets
(a limitation for all ligand-based computational methods).
The single point Mtb data has much greater chemical space
coverage than the dose-response data, as the dataset 1s 100
times larger.

With the availability of an additional Mtb test set
provided by Novartis (the first made available from a
major pharmaceutical company to our knowledge) we can
now explore further how these Bayesian models (20) predict
molecules from a single independent external laboratory.
When we analyzed the mean molecular properties for the
Novartis compounds containing both aerobic and anaerobic
hits, in total they were in a similar range to the MLSMR and
TAACF-NIAID CB2 hits described previously (Table I),
which gave us some confidence that the compounds were
not going to be dramatically different (e.g. large natural
products). However, when we focused on just the 42
compounds with aerobic MIC values < 10 pM (so as to
more closely represent the data from the original Bayesian
model training sets), these property values were lower in all
cases compared with the total dataset of aerobic and
anaerobic data. The anaerobic compounds in several cases
showed statistically different and higher mean descriptor
property values compared with the aerobic hits (e.g.
molecular weight, logP, hydrogen bond donor, hydrogen
bond acceptor, polar surface area and rotatable bond
number). This confirms our previous observations that such
generally normally distributed properties across the datasets
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can be used as potential ideal property range targets when
looking at new sets of molecules. In this case, perhaps we can
also discriminate between likely anaerobic versus aerobic hits
using molecular properties. When the Novartis compounds
were used as a test set (34 hits in 248 molecules, after
removal of compounds already in the Bayesian model), we
found a >4-fold initial enrichment over random screening
with the dose-response Bayesian model (20). The single point
Bayesian model did not perform as well and also had a lower
mean maximal Tanimoto similarity than the dose-response
model, suggesting this measure may be a useful guide for
model prediction quality. Although previously we have seen
a 10-fold enrichment with a test set of over 100,000
compounds, in the current example we used less than 250
compounds.

A second recently generated external test set was also
used, from a recent study by the Medical Research Council
screening over 1000 FDA approved drugs against Mtb and
presented 53 hits (17). We have described similarities and
differences in our predictions for 21 of these compounds
(which were not part of the training sets of the formerly
reported Bayesian models (20), Table II). Searching the
FDA drugs for these Mtb hits with the Bayesian models (20)
derived from data from SRI indicated a 10-fold enrich-
ment. We also leveraged the Bayesian models (20) to rank a
series of natural products as well as the FDA approved
drugs. After removing those structures identical to those in
the model, we arrived at some potential compounds of
interest (Supplemental Fig. 1). The dose-response model
demonstrated sertaconazole (antifungal), clofarabine (ant-
neoplastic), tioconazole (antifungal) and amodiaquine (an-
timalarial) to be highly scored. The single point model
demonstrated quinaldine blue (antineoplastic), atorvastatin
(anti-hyperlipidemic) and montelukast (antiasthmatic) to be
highly scored. In the natural products dataset, the single
point Bayesian model (20) ranked daunorubicin and 4'-
methoxychalcone with very high scores. The dose-response
model ranked inosine and hieracin, iridin, harmane, and
irigenol as high scoring. This suggests that these compounds
should be screened versus Mtb, as the majority of these have
not been previously reported to exhibit antitubercular
efficacy (Supplemental Fig. 1). Following searching of the
various TB datasets in the CDD TB database, harmane
and daunorubicin were found to inhibit Mth growth as
judged in an Alamar blue-based assay (40 and 95%
respectively) by the TB early phase drug discovery group
(data kindly provided by Dr. Bernard Munos and available
from CDD). Searching PubChem showed that sertacona-
zole (MICqy=3.4 ng/mL vs. H37Rv) and daunorubicin
(PubChem MIC=0.169 pg/mL »s. H37Rv) were active,
while inosine (inactive against non-replicating, drug-
tolerant Mtb) and harmane (not active in SRI screen) were
not. Harmane represents an example showing weak activity

in the Alamar blue and no activity in whole cells, while the
data for daunorubicin suggest it is active in both assays
described above and tends to suggest some inter-laboratory
variability in screening against Mth. On the whole, these
findings provide further prospective validation for the
models.

The test set results suggest that the very large Bayesian
models (20) generated with whole cell screening data from
one laboratory (in this case SRI) could be used to reliably
rank compounds screened and identified as Mtb hits by two
independent groups.

Interestingly, the Bayesian dose response model per-
forms better at retrieving the Novartis actives, while the
converse 1is true for the FDA approved drugs tested against
Mtb by the Medical Research Council (17). This is in
contrast to what was shown previously with the NIAID,
GVK or TAACF-CB2 test datasets (10,20), which indicated
both models, the dose response and single point, performed
similarly. This represents a benefit of using multiple
computational models, as one may perform better than
the other depending on the similarity of the test molecules,
as described earlier. Focusing on the model with the highest
mean maximal Tanimoto similarity may also be justified. In
general, when scoring compound libraries, it may therefore
be possible to look at compounds ranked highly by both
models (if the mean maximal Tanimoto similarity values
are close) or form a consensus between both models, i.c.
prioritizing those scoring highly in both models over those
scoring well in just a single model.

A Bayesian model was also generated with the Novartis
whole cell screening data using the aerobic active com-
pounds. This appeared to perform well upon use of the
more conservative leave out 50% 100-fold analysis (e.g. it
was internally consistent). However, when tested with the
SRI dose response and the FDA drug datasets, this model
did not perform as well as those described earlier. This
could be due to the limited coverage of the training set (283
vs. >2000 vs. >220,000 compounds, for the Novartis, SRI
dose-response or SRI single point screening models,
respectively), which is also reflected in the low mean
maximal Tanimoto similarity values. In particular, this is
seen when trying to predict the 21 actives in the FDA
datasets, as the mean maximal Tanimoto similarity for
these was < 0.2 alone; in addition, the mean similarity
values for all the SRI data (0.39) and FDA data (0.27) are
very low. An alternative explanation could also be the
differences in the m vitro assays used to afford the various
datasets. However, this appears unlikely based on the
previously described results showing good enrichments
using the SRI datasets with data from these other groups.
The results point to the importance of using very large high
throughput screening datasets for Bayesian model building
that will provide good coverage of future chemical libraries
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or virtual combinatorial libraries if we are to reliably rank
compounds for testing. Alternatively, focusing predictions
on compounds that have a higher maximal similarity value
(above a set threshold) to compounds in the training set is
also justified to improve predictions. Future studies should
also attempt to compare descriptors and build computa-
tional models from screening datasets for Mtb grown under
different conditions that may be physiologically relevant
and mimic the heterogeneity in the disease conditions.

Understanding the quality of the compounds and
avoiding those with liabilities such as reactivity is also
important if we are to take some compounds beyond
preclinical tests. Our results with SMARTS filtering of the
Novartis data are similar to those observed with other
screening datasets (12) and should be considered before
selecting compounds for further testing. The number of
alerts failures also correlates with the number of Lipinski
violations (Fig. 4A). Hence, the majority of compounds with
Lipinski violations > 2 (which represents approximately
11% of FDA approved drugs, Fig. 4B) fails the SMARTS
filters from different groups. Although several groups have
been moving away from using the Lipinski Rule of Five (22)
as a hard cut-off for molecule selection in recent years, and
towards other kinds of filters, it would appear that
compounds failing such SMARTS filters are also likely to
have higher numbers of Lipinski violations, which is a novel
finding. This perhaps further indicates how general the
Lipinski rules are and how they may still be useful as an
indicator in filtering compounds for screening, whether for
neglected or other diseases. In general, the TB community
1s not alone 1n its search for filtering methods to insure the
highest quality molecules are selected for follow-up hit-to-lead
optimization.

Antituberculosis drug discovery could use these Bayesian
models (or other computational methods reviewed else-
where (19)) and SMARTS alerts to assist in selecting
compounds for ¢ vitro screening that may have a higher
probability of activity against Mtb while at the same time a
lower probability of undesirable off-target effects due to
chemical reactivity. In the words of Yogi Berra, “Life is a
learning experience, only if you learn.” We need to learn
from the very large whole cell TB screening datasets that
are now in the public domain in order to expedite the
discovery of useful chemical probes of Mtb that could in
turn lead to novel therapeutic treatments.
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